

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Indeks

 # Changelog Chainlink Core

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

[Unreleased]

Added

	Task definitions in v2 jobs (those with TOML specs) now support quoting strings with angle brackets (which DOT already permitted). This is particularly useful when defining JSON blobs to post to external adapters. For example:

`
my_bridge [type=bridge name="my_bridge" requestData="{\\"hi\\": \\"hello\\"}"]
`
... can now be written as:
`
my_bridge [type=bridge name="my_bridge" requestData=<{"hi": "hello"}>]
`
Multiline strings are supported with this syntax as well:
```
my_bridge [type=bridge


name="my_bridge"
requestData=<{


"hi": "hello",
"foo": "bar"




}>]




```


	v2 jobs (those with TOML specs) now support variable interpolation in pipeline definitions. For example:


```
fetch1    [type=bridge name="fetch"]
parse1    [type=jsonparse path="foo,bar"]
fetch2    [type=bridge name="fetch"]
parse2    [type=jsonparse path="foo,bar"]
medianize [type=median]
submit    [type=bridge name="submit"



	requestData=<{
	
"result": $(medianize),
"fetchedData": [ $(parse1), $(parse2) ]




}>]








fetch1 -> parse1 -> medianize
fetch2 -> parse2 -> medianize
medianize -> submit
```

This syntax is supported by the following tasks/parameters:

	
	bridge
	
	requestData

	
	http
	
	requestData

	
	jsonparse
	
	data (falls back to the first input if unspecified)

	
	median
	
	values (falls back to the array of inputs if unspecified)

	
	multiply
	
	input (falls back to the first input if unspecified)

	times

	Add ETH_MAX_IN_FLIGHT_TRANSACTIONS configuration option. This defaults to 16 and controls how many unconfirmed transactions may be in-flight at any given moment. This is set conservatively by default, node operators running many jobs on high throughput chains will probably need to increase this above the default to avoid lagging behind. However, before increasing this value, you MUST first ensure your ethereum node is configured not to ever evict local transactions that exceed this number otherwise your node may get permanently stuck. Set to 0 to disable the limit entirely (the old behaviour). Disabling this setting is not recommended.

Relevant settings for geth (and forks e.g. BSC)

```toml
[Eth.TxPool]
Locals = ["0xYourNodeAddress1", "0xYourNodeAddress2"]  # Add your node addresses here
NoLocals = false # Disabled by default but might as well make sure
Journal = "transactions.rlp" # Make sure you set a journal file
Rejournal = 3600000000000 # Default 1h, it might make sense to reduce this to e.g. 5m
PriceBump = 10 # Must be set less than or equal to chainlink's ETH_GAS_BUMP_PERCENT
AccountSlots = 16 # Highly recommended to increase this, must be greater than or equal to chainlink's ETH_MAX_IN_FLIGHT_TRANSACTIONS setting
GlobalSlots = 4096 # Increase this as necessary
AccountQueue = 64 # Increase this as necessary
GlobalQueue = 1024 # Increase this as necessary
Lifetime = 10800000000000 # Default 3h, this is probably ok, you might even consider reducing it

```

Relevant settings for parity/openethereum (and forks e.g. xDai)

NOTE: There is a bug in parity (and xDai) where occasionally local transactions are inexplicably culled. See: https://github.com/openethereum/parity-ethereum/issues/10228

Adjusting the settings below might help.

`toml
tx_queue_locals = ["0xYourNodeAddress1", "0xYourNodeAddress2"] # Add your node addresses here
tx_queue_size = 8192 # Increase this as necessary
tx_queue_per_sender = 16 # Highly recommended to increase this, must be greater than or equal to chainlink's ETH_MAX_IN_FLIGHT_TRANSACTIONS setting
tx_queue_mem_limit = 4 # In MB. Highly recommended to increase this or set to 0
tx_queue_no_early_reject = true # Recommended to set this
tx_queue_no_unfamiliar_locals = false # This is disabled by default but might as well make sure
`

Fixed

	It is no longer required to set DEFAULT_HTTP_ALLOW_UNRESTRICTED_NETWORK_ACCESS=true to enable local fetches on bridge tasks. Please remove this if you had it set and no longer need it, since it introduces a slight security risk.

Changed

	The v2 (TOML) bridge task's includeInputAtKey parameter is being deprecated in favor of variable interpolation. Please migrate your jobs to the new syntax as soon as possible.

	Chainlink no longers writes/reads eth key files to disk

	Rename ETH_MAX_UNCONFIRMED_TRANSACTIONS to ETH_MAX_QUEUED_TRANSACTIONS. It still performs the same function but the name was misleading and would have caused confusion with the new ETH_MAX_IN_FLIGHT_TRANSACTIONS.

[0.10.7] - 2021-05-24

	If a CLI command is issued after the session has expired, and an api credentials file is found, auto login should now work.

	GasUpdater now works on RSK and xDai

	Offchain reporting jobs that have had a latest round requested can now be deleted from the UI without error

Added

	Add ETH_GAS_LIMIT_MULTIPLIER configuration option, the gas limit is multiplied by this value before transmission. So a value of 1.1 will add 10% to the on chain gas limit when a transaction is submitted.

	Add ETH_MIN_GAS_PRICE_WEI configuration option. This defaults to 1Gwei on mainnet. Chainlink will never send a transaction at a price lower than this value.

	Add chainlink node db migrate for running database migrations. It's
recommended to use this and set MIGRATE_DATABASE=false if you want to run
the migrations separately outside of application startup.

Changed

	Chainlink now automatically cleans up old eth_txes to reduce database size. By default, any eth_txes older than a week are pruned on a regular basis. It is recommended to use the default value, however the default can be overridden by setting the ETH_TX_REAPER_THRESHOLD env var e.g. ETH_TX_REAPER_THRESHOLD=24h. Reaper can be disabled entirely by setting ETH_TX_REAPER_THRESHOLD=0. The reaper will run on startup and again every hour (interval is configurable using ETH_TX_REAPER_INTERVAL).

	Heads corresponding to new blocks are now delivered in a sampled way, which is to improve
node performance on fast chains. The frequency is by default 1 second, and can be changed
by setting ETH_HEAD_TRACKER_SAMPLING_INTERVAL env var e.g. ETH_HEAD_TRACKER_SAMPLING_INTERVAL=5s.

	Database backups: default directory is now a subdirectory 'backup' of chainlink root dir, and can be changed
to any chosed directory by setting a new configuration value: DATABASE_BACKUP_DIR

[0.10.6] - 2021-05-10

Added

	Add MockOracle.sol for testing contracts

	Web job types can now be created from the operator UI as a new job.

	See example web job spec below:

`
type = "web"
schemaVersion = 1
jobID = "0EEC7E1D-D0D2-476C-A1A8-72DFB6633F46"
observationSource = """
ds [type=http method=GET url="http://example.com"];
ds_parse [type=jsonparse path="data"];
ds -> ds_parse;
"""
`

	New CLI command to convert v1 flux monitor jobs (JSON) to

v2 flux monitor jobs (TOML). Running it will archive the v1
job and create a new v2 job. Example:
```
// Get v1 job ID:
chainlink job_specs list
// Migrate it to v2:
chainlink jobs migrate fe279ed9c36f4eef9dc1bdb7bef21264

// To undo the migration:
1. Archive the v2 job in the UI
2. Unarchive the v1 job manually in the db:
update job_specs set deleted_at = null where id = 'fe279ed9-c36f-4eef-9dc1-bdb7bef21264'
```


	Improved support for Optimism chain. Added a new boolean OPTIMISM_GAS_FEES configuration variable which makes a call to estimate gas before all transactions, suitable for use with Optimism's L2 chain. When this option is used ETH_GAS_LIMIT_DEFAULT is ignored.

	Chainlink now supports routing certain calls to the eth node over HTTP instead of websocket, when available. This has a number of advantages - HTTP is more robust and simpler than websockets, reducing complexity and allowing us to make large queries without running the risk of hitting websocket send limits. The HTTP url should point to the same node as the ETH_URL and can be specified with an env var like so: ETH_HTTP_URL=https://my.ethereumnode.example/endpoint.

Adding an HTTP endpoint is particularly recommended for BSC, which is hitting websocket limitations on certain queries due to its large block size.

	Support for legacy pipeline (V1 job specs) can now be turned off by setting ENABLE_LEGACY_JOB_PIPELINE=false. This can yield marginal performance improvements if you don't need to support the legacy JSON job spec format.

[0.10.5] - 2021-04-26

Added

	Add MockOracle.sol for testing contracts

	Cron jobs can now be created for the v2 job pipeline:

`
type = "cron"
schemaVersion = 1
schedule = "*/10 * * * *"
observationSource = """
ds [type=http method=GET url="http://example.com"];
ds_parse [type=jsonparse path="data"];
ds -> ds_parse;
"""
`

Changed

	Default for JOB_PIPELINE_REAPER_THRESHOLD has been reduced from 1 week to 1 day to save database space. This variable controls how long past job run history for OCR is kept. To keep the old behaviour, you can set JOB_PIPELINE_REAPER_THRESHOLD=168h

	Removed support for the env var JOB_PIPELINE_PARALLELISM.

	OCR jobs no longer show TaskRuns in success cases. This reduces

DB load and significantly improves the performance of archiving OCR jobs.
- Archiving OCR jobs should be 5-10x faster.

Fixed

	Added GAS_UPDATER_BATCH_SIZE option to workaround websocket: read limit exceeded issues on BSC

	Basic support for Optimism chain: node no longer gets stuck with 'nonce too low' error if connection is lost

[0.10.4] - 2021-04-05

Added

	VRF Jobs now support an optional coordinatorAddress field that, when present, will tell the node to check the fulfillment status of any VRF request before attempting the fulfillment transaction. This will assist in the effort to run multiple nodes with one VRF key.

	Experimental: Add DATABASE_BACKUP_MODE, DATABASE_BACKUP_FREQUENCY and DATABASE_BACKUP_URL configuration variables

	It's now possible to configure database backups: on node start and separately, to be run at given frequency. DATABASE_BACKUP_MODE enables the initial backup on node start (with one of the values: none, lite, full where lite excludes

potentially large tables related to job runs, among others). Additionally, if DATABASE_BACKUP_FREQUENCY variable is set to a duration of
at least '1m', it enables periodic backups.
- DATABASE_BACKUP_URL can be optionally set to point to e.g. a database replica, in order to avoid excessive load on the main one. Example settings:

	DATABASE_BACKUP_MODE="full" and DATABASE_BACKUP_FREQUENCY not set, will run a full back only at the start of the node.

	DATABASE_BACKUP_MODE="lite" and DATABASE_BACKUP_FREQUENCY="1h" will lead to a partial backup on node start and then again a partial backup every one hour.

	
	Added periodic resending of eth transactions. This means that we no longer rely exclusively on gas bumping to resend unconfirmed transactions that got "lost" for whatever reason. This has two advantages:
	
	Chainlink no longer relies on gas bumping settings to ensure our transactions always end up in the mempool

2. Chainlink will continue to resend existing transactions even in the event that heads are delayed. This is especially useful on chains like Arbitrum which have very long wait times between heads.
- Periodic resending can be controlled using the ETH_TX_RESEND_AFTER_THRESHOLD env var (default 30s). Unconfirmed transactions will be resent periodically at this interval. It is recommended to leave this at the default setting, but it can be set to any [valid duration](https://golang.org/pkg/time/#ParseDuration) or to 0 to disable periodic resending.

	Logging can now be configured in the Operator UI.

	Tuned defaults for certain Eth-compatible chains

	
	Chainlink node now uses different sets of default values depending on the given Chain ID. Tuned configs are built-in for the following chains:
	
	Ethereum Mainnet and test chains

	Polygon (Matic)

	BSC

	HECO

	If you have manually set ENV vars specific to these chains, you may want to remove those and allow the node to use its configured defaults instead.

	New prometheus metric "tx_manager_num_tx_reverted" which counts the number of reverted transactions on chain.

Fixed

	Under certain circumstances a poorly configured Explorer could delay Chainlink node startup by up to 45 seconds.

	Chainlink node now automatically sets the correct nonce on startup if you are restoring from a previous backup (manual setnextnonce is no longer necessary).

	Flux monitor jobs should now work correctly with [outlier-detection](https://github.com/smartcontractkit/external-adapters-js/tree/develop/composite/outlier-detection) and [market-closure](https://github.com/smartcontractkit/external-adapters-js/tree/develop/composite/market-closure) external adapters.

	Performance improvements to OCR job adds. Removed the pipeline_task_specs table

and added a new column dot_id to the pipeline_task_runs table which links a pipeline_task_run
to a dotID in the pipeline_spec.dot_dag_source.

	Fixed bug where node will occasionally submit an invalid OCR transmission which reverts with "address not authorized to sign".

	Fixed bug where a node will sometimes double submit on runlog jobs causing reverted transactions on-chain

[0.10.3] - 2021-03-22

Added

	Add STATS_PUSHER_LOGGING to toggle stats pusher raw message logging (DEBUG
level).

	Add ADMIN_CREDENTIALS_FILE configuration variable

This variable defaults to $ROOT/apicredentials and when defined / the
file exists, any command using the CLI that requires authentication will use it
to automatically log in.

	Add ETH_MAX_UNCONFIRMED_TRANSACTIONS configuration variable

Chainlink node now has a maximum number of unconfirmed transactions that
may be in flight at any one time (per key).

If this limit is reached, further attempts to send transactions will fail
and the relevant job will be marked as failed.

Jobs will continue to fail until at least one transaction is confirmed
and the queue size is reduced. This is introduced as a sanity limit to
prevent unbounded sending of transactions e.g. in the case that the eth
node is failing to broadcast to the network.

The default is set to 500 which considered high enough that it should
never be reached under normal operation. This limit can be changed
by setting the ETH_MAX_UNCONFIRMED_TRANSACTIONS environment variable.

	Support requestNewRound in libocr

requestNewRound enables dedicated requesters to request a fresh report to
be sent to the contract right away regardless of heartbeat or deviation.

	New prometheus metric:

`
Name: "head_tracker_eth_connection_errors",
Help: "The total number of eth node connection errors",
`

	Gas bumping can now be disabled by setting ETH_GAS_BUMP_THRESHOLD=0

	Support for arbitrum

Fixed

	Improved handling of the case where we exceed the configured TX fee cap in geth.

Node will now fatally error jobs if the total transaction costs exceeds the
configured cap (default 1 Eth). Also, it will no longer continue to bump gas on
transactions that started hitting this limit and instead continue to resubmit
at the highest price that worked.

Node operators should check their geth nodes and remove this cap if configured,
you can do this by running your geth node with --rpc.gascap=0
--rpc.txfeecap=0 or setting these values in your config toml.

	Make head backfill asynchronous. This should eliminate some harmless but
annoying errors related to backfilling heads, logged on startup and
occasionally during normal operation on fast chains like Kovan.

	Improvements to the GasUpdater

Various efficiency and correctness improvements have been made to the
GasUpdater. It places less load on the ethereum node and now features re-org
detection.

Most notably, GasUpdater no longer takes a 24 block delay to "warm up" on
application start and instead loads all relevant block history immediately.
This means that the application gas price will always be updated correctly
after reboot before the first transaction is ever sent, eliminating the previous
scenario where the node could send underpriced or overpriced transactions for a
period after a reboot, until the gas updater caught up.

Changed

	Bump ORM_MAX_OPEN_CONNS default from 10 to 20

	Bump ORM_MAX_IDLE_CONNS default from 5 to 10

Each Chainlink node will now use a maximum of 23 database connections (up from previous max of 13). Make sure your postgres database is tuned accordingly, especially if you are running multiple Chainlink nodes on a single database. If you find yourself hitting connection limits, you can consider reducing ORM_MAX_OPEN_CONNS but this may result in degraded performance.

	The global env var JOB_PIPELINE_MAX_TASK_DURATION is no longer supported

for OCR jobs.

[0.10.2] - 2021-02-26

Fixed

	Add contexts so that database queries timeout when necessary.

	Use manual updates instead of gorm update associations.

[0.10.1] - 2021-02-25

Fixed

	Prevent autosaving Task Spec on when Task Runs are saved to lower database load.

[0.10.0] - 2021-02-22

Fixed

	Fix a case where archiving jobs could try to delete it from the external initiator even if the job was not an EI job.

	Improved performance of the transaction manager by fetching receipts in
batches. This should help prevent the node from getting stuck when processing
large numbers of OCR jobs.

	Fixed a fluxmonitor job bug where submitting a value outside the acceptable range would stall the job
permanently. Now a job spec error will be thrown if the polled answer is outside the
acceptable range and no ethtx will be submitted. As additional protection, we also now
check the receipts of the ethtx's and if they were reverted, we mark the ethtx task as failed.

Breaking

	Squashed migrations into a single 1_initial migration. If you were running a version
older than 0.9.10, you need to upgrade to 0.9.10 first before upgrading to the next
version so that the migrations are run.

Added

	A new Operator UI feature that visualize JSON and TOML job spec tasks on a 'New Job' page.

[0.9.10] - 2021-01-30

Fixed

	Fixed a UI bug with fluxmonitor jobs where initiator params were bunched up.

	Improved performance of OCR jobs to reduce database load. OCR jobs now run with unlimited parallelism and are not affected by JOB_PIPELINE_PARALLELISM.

Added

	A new env var JOB_PIPELINE_MAX_RUN_DURATION has been added which controls maximum duration of the total run.

[0.9.9] - 2021-01-18

Added

	New CLI commands for key management:
- chainlink keys eth import
- chainlink keys eth export
- chainlink keys eth delete

	All keys other than VRF keys now share the same password. If you have OCR, P2P, and ETH keys encrypted with different passwords, re-insert them into your DB encrypted with the same password prior to upgrading.

Fixed

	Fixed reading of function selector values in DB.

	Support for bignums encoded in CBOR

	Silence spurious Job spawner ORM attempted to claim locally-claimed job warnings

	OCR now drops transmissions instead of queueing them if the node is out of Ether

	Fixed a long-standing issue where standby nodes would hold transactions open forever while waiting for a lock. This was preventing postgres from running necessary cleanup operations, resulting in bad database performance. Any node operators running standby failover chainlink nodes should see major database performance improvements with this release and may be able to reduce the size of their database instances.

	Fixed an issue where expired session tokens in operator UI would cause a large number of reqeusts to be sent to the node, resulting in a temporary rate-limit and 429 errors.

	Fixed issue whereby http client could leave too many open file descriptors

Changed

	Key-related API endpoints have changed. All key-related commands are now namespaced under /v2/keys/..., and are standardized across key types.

	All key deletion commands now perform a soft-delete (i.e. archive) by default. A special CLI flag or query string parameter must be provided to hard-delete a key.

	Node now supports multiple OCR jobs sharing the same peer ID. If you have more than one key in your database, you must now specify P2P_PEER_ID to indicate which key to use.

	DATABASE_TIMEOUT is now set to 0 by default, so that nodes will wait forever for a lock. If you already have DATABASE_TIMEOUT=0 set explicitly in your env (most node operators) then you don't need to do anything. If you didn't have it set, and you want to keep the old default behaviour where a node exits shortly if it can't get a lock, you can manually set DATABASE_TIMEOUT=500ms in your env.

	OCR bootstrap node no longer sends telemetry to the endpoint specified in the OCR job spec under MonitoringEndpoint.

[0.9.8] - 2020-12-17

Fixed

	An issue where the node would emit warnings on startup for fluxmonitor contracts

[0.9.7] - 2020-12-14

Added

	OCR bootstrap node now sends telemetry to the endpoint specified in the OCR job spec under MonitoringEndpoint.

	Adds "Account addresses" table to the /keys page.

Changed

	Old jobs now allow duplicate job names. Also, if the name field is empty we no longer generate a name.

	Removes broken ACCOUNT_ADDRESS field from /config page.

Fixed

	Brings /runs tab back to the operator UI.

	Signs out a user from operator UI on authentication error.

BREAKING CHANGES

	Commands for creating/managing legacy jobs and OCR jobs have changed, to reduce confusion and accomodate additional types of jobs using the new pipeline.

V1 jobs

jobs archive => job_specs archive
jobs create => job_specs create
jobs list => job_specs list
jobs show => job_specs show

V2 jobs (currently only applies to OCR)

jobs createocr => jobs create
jobs deletev2 => jobs delete
jobs run => jobs run

[0.9.6] - 2020-11-23

	OCR pipeline specs can now be configured on a per-task basis to allow unrestricted network access for http tasks. Example like so:

`
ds1 [type=http method=GET url="http://example.com" allowunrestrictednetworkaccess="true"];
ds1_parse [type=jsonparse path="USD" lax="true"];
ds1_multiply [type=multiply times=100];
ds1 -> ds1_parse -> ds1_multiply;
`

	New prometheus metrics as follows:


```
Name: "pipeline_run_errors",
Help: "Number of errors for each pipeline spec",

Name: "pipeline_run_total_time_to_completion",
Help: "How long each pipeline run took to finish (from the moment it was created)",

Name: "pipeline_tasks_total_finished",
Help: "The total number of pipline tasks which have finished",

Name: "pipeline_task_execution_time",
Help: "How long each pipeline task took to execute",

Name: "pipeline_task_http_fetch_time",
Help: "Time taken to fully execute the HTTP request",

Name: "pipeline_task_http_response_body_size",
Help: "Size (in bytes) of the HTTP response body",

Name: "pipeline_runs_queued",
Help: "The total number of pipline runs that are awaiting execution",

Name: "pipeline_task_runs_queued",
Help: "The total number of pipline task runs that are awaiting execution",
```

Changed

Numerous key-related UX improvements:

	All key-related commands have been consolidated under the chainlink keys subcommand:
- chainlink createextrakey => chainlink keys eth create
- chainlink admin info => chainlink keys eth list
- chainlink node p2p [create|list|delete] => chainlink keys p2p [create|list|delete]
- chainlink node ocr [create|list|delete] => chainlink keys ocr [create|list|delete]
- chainlink node vrf [create|list|delete] => chainlink keys vrf [create|list|delete]

	Deleting OCR key bundles and P2P key bundles now archives them (i.e., soft delete) so that they can be recovered if needed. If you want to hard delete a key, pass the new --hard flag to the command, e.g. chainlink keys p2p delete --hard 6.

	Output from ETH/OCR/P2P/VRF key CLI commands now renders consistently.

	Deleting an OCR/P2P/VRF key now requires confirmation from the user. To skip confirmation (e.g. in shell scripts), pass --yes or -y.

	The --ocrpassword flag has been removed. OCR/P2P keys now share the same password at the ETH key (i.e., the password specified with the --password flag).

Misc:

	Two new env variables are added P2P_ANNOUNCE_IP and P2P_ANNOUNCE_PORT which allow node operators to override locally detected values for the chainlink node's externally reachable IP/port.

	OCR_LISTEN_IP and OCR_LISTEN_PORT have been renamed to P2P_LISTEN_IP and P2P_LISTEN_PORT for consistency.

	Support for adding a job with the same name as one that was deleted.

Fixed

	Fixed an issue where the HTTP adapter would send an empty body on retries.

	Changed the default JOB_PIPELINE_REAPER_THRESHOLD value from 7d to 168h (hours are the highest time unit allowed by time.Duration).

[0.9.5] - 2020-11-12

Changed

	Updated from Go 1.15.4 to 1.15.5.

[0.9.4] - 2020-11-04

Fixed

	Hotfix to fix an issue with httpget adapter

[0.9.3] - 2020-11-02

Added

	Add new subcommand node hard-reset which is used to remove all state for unstarted and pending job runs from the database.

Changed

	Chainlink now requires Postgres >= 11.x. Previously this was a recommendation, this is now a hard requirement. Migrations will fail if run on an older version of Postgres.

	Database improvements that greatly reduced the number of open Postgres connections

	Operator UI /jobs page is now searchable

	Jobs now accept a name field in the jobspecs

[0.9.2] - 2020-10-15

Added

	Bulletproof transaction manager enabled by default

	Fluxmonitor support enabled by default

Fixed

	Improve transaction manager architecture to be more compatible with ETH_SECONDARY_URL option (i.e. concurrent transaction submission to multiple different eth nodes). This also comes with some minor performance improvements in the tx manager and more correct handling of some extremely rare edge cases.

	As a side-effect, we now no longer handle the case where an external wallet used the chainlink ethereum private key to send a transaction. This use-case was already explicitly unsupported, but we made a best-effort attempt to handle it. We now make no attempt at all to handle it and doing this WILL result in your node not sending the data that it expected to be sent for the nonces that were used by an external wallet.

	Operator UI now shows booleans correctly

Changed

	ETH_MAX_GAS_PRICE_WEI now 1500Gwei by default

[0.8.18] - 2020-10-01

Fixed

	Prometheus gas_updater_set_gas_price metric now only shows last gas price instead of every block since restart

[0.8.17] - 2020-09-28

Added

	Add new env variable ETH_SECONDARY_URL. Default is unset. You may optionally set this to an http(s) ethereum RPC client URL. If set, transactions will also be broadcast to this secondary ethereum node. This allows transaction broadcasting to be more robust in the face of primary ethereum node bugs or failures.

	Remove configuration option ORACLE_CONTRACT_ADDRESS, it had no effect

	Add configuration option OPERATOR_CONTRACT_ADDRESS, it filters the contract addresses the node should listen to for Run Logs

	At startup, the chainlink node will create a new funding address. This will initially be used to pay for cancelling stuck transactions.

Fixed

	Gas bumper no longer hits database constraint error if ETH_MAX_GAS_PRICE_WEI is reached (this was actually mostly harmless, but the errors were annoying)

Changes

	ETH_MAX_GAS_PRICE_WEI now defaults to 1500 gwei

[0.8.16] - 2020-09-18

Added

	The chainlink node now will bump a limited configurable number of transactions at once. This is configured with the ETH_GAS_BUMP_TX_DEPTH variable which is 10 by default. Set to 0 to disable (the old behaviour).

Fixed

	ETH_DISABLED flag works again

[0.8.15] - 2020-09-14

Added

	Chainlink header images to the following README.md files: root, core,
evm-contracts, and evm-test-helpers.

	Database migrations: new log_consumptions records will contain the number of the associated block.
This migration will allow future version of chainlink to automatically clean up unneeded log_consumption records.
This migration should execute very fast.

	External Adapters for the Flux Monitor will now receive the Flux Monitor round state info as the meta payload.

	Reduce frequency of balance checking.

Fixed

Previously when the node was overloaded with heads there was a minor possibility it could get backed up with a very large head queue, and become unstable. Now, we drop heads instead in this case and noisily emit an error. This means the node should more gracefully handle overload conditions, although this is still dangerous and node operators should deal with it immediately to avoid missing jobs.

A new environment variable is introduced to configure this, called ETH_HEAD_TRACKER_MAX_BUFFER_SIZE. It is recommended to leave this set to the default of "3".

A new prometheus metric is also introduced to track dropped heads, called head_tracker_num_heads_dropped. You may wish to set an alert on a rule such as increase(chainlink_dropped_heads[5m]) > 0.

[0.8.14] - 2020-09-02

Changed

	Fix for gas bumper

	Fix for broadcast-transactions function

[0.8.13] - 2020-08-31

Changed

	Fix for gas bumper

	Fix for broadcast-transactions function

[0.8.13] - 2020-08-31

Changed

	Performance improvements when using BulletproofTxManager.

[0.8.12] - 2020-08-10

Fixed

	Added a workaround for Infura users who are seeing "error getting balance: header not found".
This behaviour is due to Infura announcing it has a block, but when we request our balance in this block, the eth node doesn't have the block in memory. The workaround is to add a configurable lag time on balance update requests. The default is set to 1 but this is configurable via a new environment variable ETH_BALANCE_MONITOR_BLOCK_DELAY.

[0.8.11] - 2020-07-27

Added

	Job specs now support pinning to multiple keys using the new fromAddresses field in the ethtx task spec.

Changed

	Using fromAddress in ethtx task specs has been deprecated. Please use fromAddresses instead.

Breaking changes

	Support for RunLogTopic0original and RunLogTopic20190123withFullfillmentParams logs has been dropped. This should not affect any users since these logs predate Chainlink's mainnet launch and have never been used on mainnet.

IMPORTANT: The selection mechanism for keys has changed. When an ethtx task spec is not pinned to a particular key by defining fromAddress or fromAddresses, the node will now cycle through all available keys in round robin fashion. This is a change from the previous behaviour where nodes would only pick the earliest created key.

This is done to allow increases in throughput when a node operator has multiple whitelisted addresses for their oracle.

If your node has multiple keys, you will need to take one of the three following actions:

	Make sure all keys are valid for all job specs

	Pin job specs to a valid subset of key(s) using fromAddresses

	Delete the key(s) you don't want to use

If your node only has one key, no action is required.

[0.8.10] - 2020-07-14

Fixed

	Incorrect sequence on keys table in some edge cases

[0.8.9] - 2020-07-13

Added

	Added a check on sensitive file ownership that gives a warning if certain files are not owned by the user running chainlink

	Added mechanism to asynchronously communicate when a job spec has an ethereum interaction error (or any async error) with a UI screen

	Gas Bumper now bumps based on the current gas price instead of the gas price of the original transaction

Fixed

	Support for multiple node addresses

[0.8.8] - 2020-06-29

Added

	ethtx tasks now support a new parameter, minRequiredOutgoingConfirmations which allows you to tune how many confirmations are required before moving on from an ethtx task on a per task basis (only works with BulletproofTxManager). If it is not supplied, the default of MIN_OUTGOING_CONFIRMATIONS is used (same as the old behaviour).

Changed

	HeadTracker now automatically backfills missing heads up to ETH_FINALITY_DEPTH

	The strategy for gas bumping has been changed to produce a potentially higher gas cost in exchange for the transaction getting through faster.

Breaking changes

	admin withdraw command has been removed. This was only ever useful to withdraw LINK if the Oracle contract was owned by the Chainlink node address. It is no longer recommended to have the Oracle owner be the chainlink node address.

	Fixed txs create to send the amount in Eth not in Wei (as per the documentation)

[0.8.7] - 2020-06-15

Added

This release contains a number of features aimed at improving the node's reliability when putting transactions on-chain.

	An experimental new transaction manager is introduced that delivers reliability improvements compared to the old one, especially when faced with difficult network conditions or spiking gas prices. It also reduces load on the database and makes fewer calls to the eth node compared to the old tx manager.

	Along with the new transaction manager is a local client command for manually controlling the node nonce - setnextnonce. This should never be necessary under normal operation and is included only for use in emergencies.

	New prometheus metrics for the head tracker:
- head_tracker_heads_in_queue - The number of heads currently waiting to be executed. You can think of this as the 'load' on the head tracker. Should rarely or never be more than 0.
- head_tracker_callback_execution_duration - How long it took to execute all callbacks. If the average of this exceeds the time between blocks, your node could lag behind and delay transactions.

	Nodes transmit their build info to Explorer for better debugging/tracking.

Env var changes

	ENABLE_BULLETPROOF_TX_MANAGER - set this to true to enable the experimental new transaction manager

	ETH_GAS_BUMP_PERCENT default value has been increased from 10% to 20%

	ETH_GAS_BUMP_THRESHOLD default value has been decreased from 12 to 3

	ETH_FINALITY_DEPTH specifies how deep protection should be against re-orgs. The default is 50. It only applies if BulletproofTxManager is enabled. It is not recommended to change this setting.

	EthHeadTrackerHistoryDepth specifies how many heads the head tracker should keep in the database. The default is 100. It is not recommended to change this setting.

	Update README.md with links to mockery, jq, and gencodec as they are required to run go generate ./...

[0.8.6] - 2020-06-08

Added

	The node now logs the eth client RPC calls

	More reliable Ethereum block header tracking

	Limit the amount of an HTTP response body that the node will read

	Make Aggregator contract interface viewable

	More resilient handling of chain reorganizations

[0.8.5] - 2020-06-01

Added

	The chainlink node can now be configured to backfill logs from n blocks after a
connection to the ethereum client is reset. This value is specified with an environment
variable BLOCK_BACKFILL_DEPTH.

	The chainlink node now sets file permissions on sensitive files on startup (tls, .api, .env, .password and secret)

	AggregatorInterface now has description and version fields.

Changed

	Solidity: Renamed the previous AggregatorInterface.sol to
HistoricAggregatorInterface.sol. Users are encouraged to use the new methods
introduced on the AggregatorInterface`(`getRoundData and latestRoundData),
as they return metadata to indicate freshness of the data in a single
cross-contract call.

	Solidity: Marked HistoricAggregatorInterface methods (latestAnswer,
latestRound, latestTimestamp, getAnswer, getTimestamp) as deprecated
on FluxAggregator, WhitelistedAggregator, AggregatorProxy,
WhitelistedAggregatorProxy.

	Updated the solidity compiler version for v0.6 from 0.6.2 to 0.6.6.

	AccessControlledAggregatorProxy checks an external contract for users to be able to
read functions.

Fixed

	Fluxmonitor jobs now respect the minPayment field on job specs and won't poll if the contract
does not have sufficient funding. This allows certain jobs to require a larger payment
than MINIMUM_CONTRACT_PAYMENT.

[0.8.4] - 2020-05-18

Added

	Fluxmonitor initiators may now optionally include an absoluteThreshold
parameter. To trigger a new on-chain report, the absolute difference in the feed
value must change by at least the absoluteThreshold value. If it is
unspecified or zero, fluxmonitor behavior is unchanged.

	Database Migrations: Add created_at and updated_at to all tables allowing for
better historical insights. This migration may take a minute or two on large
databases.

Fixed

	Fix incorrect permissions on some files written by the node
Prevent a case where duplicate ethereum keys could be added
Improve robustness and reliability of ethtx transaction logic

[0.8.3] - 2020-05-04

Added

	Added Changelog.

	Database Migrations: There a number of database migrations included in this
release as part of our ongoing effort to make the node even more reliable and
stable, and build a firm foundation for future development.

Changed

	New cron strings MUST now include time zone. If you want your jobs to run in
UTC for example: CRON_TZ=UTC * * * * *. Previously, jobs specified without a
time zone would run in the server's native time zone, which in most cases is UTC
but this was never guaranteed.

Fixed

	Fix crash in experimental gas updater when run on Kovan network

[0.8.2] - 2020-04-20

[0.8.1] - 2020-04-08

[0.8.0] - 2020-04-06

 # Community

[![Discord](https://img.shields.io/discord/592041321326182401?style=flat-square&logo=discord)](https://discordapp.com/invite/aSK4zew)
[![Subreddit subscribers](https://img.shields.io/reddit/subreddit-subscribers/Chainlink?logo=reddit&style=flat-square)](https://www.reddit.com/r/Chainlink/)
[![Twitter Follow](https://img.shields.io/twitter/follow/chainlink?logo=twitter&style=flat-square)](https://twitter.com/chainlink)
[![Telegram](https://img.shields.io/badge/Telegram-Follow-blue?style=flat-square&logo=telegram)](https://t.me/chainlinkofficial)
[![YouTube Channel](https://img.shields.io/badge/YouTube-Subscribe-red?style=flat-square&logo=youtube)](https://www.youtube.com/chainlinkofficial)
[![WeChat](https://img.shields.io/badge/WeChat-Follow-green?style=flat-square&logo=wechat)](https://blog.chain.link/chainlink-chinese-communities/)
[![Sina Weibol](https://img.shields.io/badge/Weibo-Follow-red?style=flat-square&logo=sina-weibo)](https://weibo.com/chainlinkofficial)

In addition to the Chainlink community resources in the badges above, here is a
cultivated list of other community related resources.

Developer Resources

Repositories

	[@chainlink/box] - Truffle box

	[@chainlink/external-adapter-js] - Chainlink external adapter repo

	[awesome-chainlink] - Awesome projects built with Chainlink

	[Chainlink Documentation](https://github.com/smartcontractkit/documentation/) - Our open source documentation site

Platforms and Services

	[Gitcoin] - Hackathons, bounties, and grants

Presentations

	Connecting Smart Contracts to any/all Off-chain Contract Events,
Privacy Preserving Computations and On-chain Reference Data by Sergey Nazarov
- [Devcon5](https://chain.link/presentations/devcon5.pdf)
- [English](https://chain.link/presentations/english.pdf)
- [Chinese](https://chain.link/presentations/chinese.pdf)
- [Korean](https://chain.link/presentations/korean.pdf)
- [Japanese](https://chain.link/presentations/japanese.pdf)

[awesome chainlink]: https://github.com/JohannEid/awesome-chainlink
[devvon5]: https://chain.link/presentations/devcon5.pdf
[external-adapter-js]: https://github.com/smartcontractkit/external-adapters-js
[gitcoin]: https://gitcoin.co/

 # Contributing to ChainLink

First, thank you for considering contributing to ChainLink.
The Chainlink source code is [licensed under the MIT license](https://github.com/smartcontractkit/chainlink/blob/master/LICENSE).
We value contributions of any size or type from anyone!
The smallest of fixes can make the biggest difference.
Please dive in. Feel free to ask questions on [our Gitter](https://gitter.im/smartcontractkit-chainlink/Lobby), open an issue, or send a pull request on GitHub.

We follow an [agile development process](http://agilemanifesto.org/).
You can view our current priorities for development listed on [Pivotal Tracker](https://www.pivotaltracker.com/n/projects/2129823).
If you run into a bug or have a problem, the best action is to open an issue on Github (please search for related closed issues first).
The Github issue will be migrated to Tracker and prioritized. We'll keep you updated as the issue progresses.

If you're interested in helping out with the development cycle, feel free to tackle open issues. We've even set aside a few that are [good introductory issues](https://github.com/smartcontractkit/chainlink/issues?q=is%3Aissue+label%3A%22good+first+issue%22).
If you see something you'd like to help with [on Tracker](https://www.pivotaltracker.com/n/projects/2129823),
reach out to us [on Gitter](https://gitter.im/smartcontractkit-chainlink/Lobby) to coordinate.

Testing

Testing is core to our development philosophy.
In building an application that will power the infrastructure of the future,
we believe that well tested code is of the utmost importance.
We do everything we can to ensure that [the test suite](https://circleci.com/gh/smartcontractkit/chainlink)
is stable and maintains a high level of coverage
(even if that is difficult with Go).
Please write tests for your code and make sure that the existing suite continues to pass.
If you run into trouble with this, you can always ask for tips in [our Gitter](https://gitter.im/smartcontractkit-chainlink/Lobby).

Code Style

If making a change to the code, please try to follow our [style guide](https://github.com/smartcontractkit/chainlink/wiki/Code-Style-Guide).

More to come...

 # BulletproofTxManager Architecture Overview

Diagrams

Finite state machine

eth_txes.state

unstarted
|
|
v
in_progress (only one per key)
| | v v
fatal_error unconfirmed

^

|

v |

confirmed

eth_tx_attempts.state

in_progress
| ^
| |
v |
broadcast

Data structures

Key:

⚫️ - has never been broadcast to the network

🟠 - may or may not have been broadcast to the network

🔵 - has definitely been broadcast to the network

EB - EthBroadcaster

EC - EthConfirmer

eth_txes has five possible states:

	EB ⚫️ unstarted

	EB 🟠 in_progress

	EB/EC ⚫️ fatal_error

	EB/EC 🔵 unconfirmed

	EB/EC 🔵 confirmed

eth_tx_attempts has two possible states:

	EB/EC 🟠 in_progress

	EB/EC 🔵 broadcast

An attempt may have 0 or more eth_receipts indicating that the transaction has been mined into a block. This block may or may not exist as part of the canonical longest chain.

keys has a field:

	next_nonce

Which tracks the nonce that is available to use for the next transaction. It is only updated after a successful broadcast has occurred.

Components

BulletproofTxManager is split into three components, each of which has a clearly delineated set of responsibilities.

EthTx

Conceptually, EthTx defines the transaction.

EthTx is responsible for generating the transaction criteria and inserting the initial unstarted row into the eth_txes table.

EthTx guarantees that the transaction is defined with the following criteria:

	From address

	To address

	Encoded payload

	Value (eth)

	Gas limit

Only one transaction may be created per EthTx task.

EthTx should wait until it's transaction confirms before marking the task as completed.

EthBroadcaster

Conceptually, EthBroadcaster assigns a nonce to a transaction and ensures that it is valid. It alone controls the keys.next_nonce field.

EthBroadcaster monitors eth_txes for transactions that need to be broadcast, assigns nonces and ensures that at least one eth node somewhere has placed the transaction into its mempool.

It does not guarantee eventual confirmation!

A whole host of other things can subsequently go wrong such as transactions being evicted from the mempool, eth nodes crashing, netsplits between eth nodes, chain re-orgs etc. Responsibility for ensuring eventual inclusion into the longest chain falls on the shoulders of EthConfirmer.

EthBroadcaster makes the following guarantees:

	A gapless, monotonically increasing sequence of nonces for eth_txes (scoped to key).

	Transition of eth_txes from unstarted to either fatal_error or unconfirmed.

	If final state is fatal_error then the nonce is unassigned and it is impossible that this transaction could ever be mined into a block.

	If final state is unconfirmed then a saved eth_transaction_attempt exists.

	If final state is unconfirmed then an eth node somewhere has accepted this transaction into its mempool at least once.

EthConfirmer must serialize access on a per-key basis since nonce assignment needs to be tightly controlled. Multiple keys can however be processed in parallel. Serialization is enforced with an advisory lock scoped to the key.

EthConfirmer

Conceptually, EthConfirmer adjusts the gas price as necessary to get a transaction mined into a block on the longest chain.

EthConfirmer listens to new heads and performs four separate tasks in sequence every time we become aware of a longer chain.

1. Mark "broadcast before"

When we receive a block we can be sure that any currently unconfirmed transactions were broadcast before this block was received, so we set broadcast_before_block_num on all transaction attempts made since we saw the last block.

It is important to know how long a transaction has been waiting for inclusion, so we can know for how many blocks a transaction has been waiting for inclusion in order to decide if we need to bump gas.

2. Check for receipts

Find all unconfirmed transactions and ask the eth node for a receipt. If there is a receipt, we save it and move this transaction into confirmed state.

3. Bump gas if necessary

Find all unconfirmed transactions where all attempts have remained unconfirmed for more than ETH_GAS_BUMP_THRESHOLD blocks. Create a new eth_transaction_attempt for each, with a higher gas price.

4. Re-org protection

Find all transactions confirmed within the past ETH_FINALITY_DEPTH blocks and verify that they have at least one receipt in the current longest chain. If any do not, then rebroadcast those transactions.

EthConfirmer makes the following guarantees:

	All transactions will eventually be confirmed on the canonical longest chain, unless a reorg occurs that is deeper than ETH_FINALITY_DEPTH blocks.

	In the case that an external wallet used the nonce, we will ensure that a transaction exists at this nonce up to a depth of ETH_FINALITY_DEPTH blocks but it most likely will not be the transaction in our database.

Note that since checking for inclusion in the longest chain can now be done cheaply, without any calls to the eth node, ETH_FINALITY_DEPTH can be set to something quite large without penalty (e.g. 50 or 100).

EthBroadcaster runs are designed to be serialized. Running it concurrently with itself probably can't get the data into an inconsistent state, but it might hit database conflicts or double-send transactions. Serialization is enforced with an advisory lock.

Head Tracker limitations

The design of EthConfirmer relies on an unbroken chain of heads in our database. If there is a break in the chain of heads, our re-org protection is limited to this break.

For example if we have heads at heights:

1

2

4

Then a reorg that happened at block height 3 or above will not be detected and any transactions mined in those blocks may be left erroneously marked as confirmed.

Currently the design of the head tracker opens us up to gaps in the head sequence. This can occur in several scenarios:

	CL Node goes offline for more than one or two blocks

	Eth node is behind a load balancer and gets switched out for one that has different block timing

	Websocket connection is broken and resubscribe does not occur right away

For this reason, I propose that follow up work should be undertaken to ensure that the head tracker has some facility for backfilling heads up to`ETH_FINALITY_DEPTH`.

 # Documentation

Tools

[Shields IO] - API reference and tool for generating badge images.

[Simple Icons] - The default icon set used by Shields IO.

[shields io]: https://shields.io/
[simple icons]: https://simpleicons.org/

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

